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SUMMARY

An efficient methodology is presented for integrating legacy applications written in Fortran into a distributed

object framework. Issues and strategies regarding the conversion and decomposition of Fortran codes into Common
Object Request Broker Architecture (CORBA) objects are discussed. Fortran codes are modified as little as possible

as they are decomposed into modules and wrapped as objects. A new conversion tool takes the Fortran application
as input and generates the C/C++ header file and Interface Definition Language (IDL) file. In addition, the

performance of the client server computing is evaluated.

INTRODUCTION

Recent progress in distributed object technology has enabled software applications to be developed and

deployed easily such that objects or components can work together across network boundaries, in different operating
systems, and in different languages. A distributed object is not necessarily a complete application but rather a reusa-
ble, self-contained piece of software that cooperates with other objects in a plug-and-play fashion via a well-defined

interface. The Common Object Request Broker Architecture (CORBA), a middleware standard defined by the

Object Management Group (OMG) (ref. 1 ), uses the Interface Definition Language (IDL) to specify such an inter-
face for transparent communication between distributed objects. Since IDL can be mapped to any programming

language, such as C++, Java (Sun Microsystems), or Smalltalk, existing applications can be integrated into a new
application and the tasks of rewriting code and maintaining software can be reduced.

In OMG's object model, an object is an encapsulated entity with a distinct immutable identity. Its services can

be accessed only through interfaces defined in IDL (ref. 2). Clients issue requests to objects to perform services on
their behalf, but the implementation and location of each object are hidden from the requesting client. Communica-
tion between clients and objects is provided by the Object Request Broker (ORB), a key component of the CORBA

architecture. Upon compiling an IDL file, the ORB generates the stub and the skeleton through which a client can
invoke a method on a server object, which can be on the same machine or across a network. The ORB is responsible

for finding an object that can implement the request, passing it the parameters, invoking its method, and returning
the results to the client. In this process, the client does not have to be aware of where the object is located, its pro-

gramming language, its operating system, or any other system aspects that are not part of an objects interface.

Since its inception, CORBA has been widely accepted as the middleware standard for distributed object
computing. It relieves distributed application developers of the cumbersome task of dealing with issues due to het-

erogeneous computing environments, and it provides a standards-based interface to facilitate transparent exchange
of management information for computer and communication networks (refs. 3 and 4). TeleMed (ref. 5) is an effort
to demonstrate sharing multimedia electronic medical records over a wide area network. It was designed as a dis-

tributed object system in which the various healthcare components are dealt with as objects and distributed via
the CORBA standard. CORBA-based distributed object technology is considered the key to integrating legacy

applications in highly dynamic business environments (ref. 6). Industry-specific success stories about CORBA
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applicationsarereportedinOMG'swebsite(ref.7).OMG'sDomainTechnicalCommitteeaimsatdeveloping
domain-specificCORBAservicesandtechnologiesinvariousindustries.

ManyscientificapplicationsinaerodynamicsandsolidmechanicsarewritteninFortran.Refittingtheselegacy
FortrancodeswithCORBAobjectscanincreasethecodereusability.Forexample,scientistscouldlinktheirspec-
ificapplicationstoobjectifiedvintageFortranprogramssuchasPartialDifferentialEquationsolvers,inaplug-and-
playfashion.ManystandaloneFortranapplicationsdevelopedtoanalyzetheperformanceofanindividualcompo-
nentoftheengineeringsystemcanbeconvertedtoCORBAobjectsandthencombinedwithotherobjectstodesign
theentiresystem.Reference8documentsattemptstoprovideacollaborativedesignandsimulationenvironment
basedonthisconcept.A CORBA-basedsoftwareenvironmentisdevelopedinreference9.Itcouplestwoindepend-
entlydevelopedcodeswritteninFortranandC++tomodelathermomechanicalproblem.A computationallyinten-
siveFortranapplicationalsocanbedecomposedintoseveralpieces,madeintoCORBAobjects,anddistributed
overseveralmachinestospeedupthecomputation.Unfortunately,CORBA-IDL-to-Fortranmappinghasnotbeen
proposed,andthereseemstobenodirectmethodofgeneratingCORBAobjectsfromFortranwithoutmanually
writingC/C++wrappers.

Inthispaper,wepresentanefficientmethodologytointegrateapplicationswritteninFortranintoadistributed
objectframework.IssuesandstrategiesregardingtheconversionanddecompositionofFortrancodesintoCORBA
objectsarediscussed.OurgoalwastokeeptheFortrancodesunmodifiedasmuchaspossible.Toreducethepro-
grammingeffortincodewrapping,wedesignedandimplementedaconversiontoolthattakestheFortranapplica-
tionprogramasinputandgeneratestheC/C++headerfileandIDLfile.Attheendofthispaper,weevaluatethe
performanceoftheclient-servercomputingandidentifypossiblecommunicationoverhead.

METHODOLOGY

Onemethodofwrappingalegacyapplicationistoencapsulatetheentirelegacycodeintoasingleobject.
Programmersonlyneedtoprovideaserverthatwill invokethewrappedlegacy-codeobjectwhenit receivesa
requestfromaclient.Thisstraightforwardmethodissuitableforsmall-scaleapplicationsthathaveonlyonemodule
orentity.

Forcomplicatedapplications,analternativemethodthatweareinterestedinistodecomposethecodesinto
differentfunctionmodulesandwrapeachmoduleintoadistributedobject.Thismethodcanincreasethecodeusa-
bilitybecauseeachdistributedobjectcanbeinvokedbyadifferentapplicationasaplug-and-playsoftwarecompo-
nent.Figure1showstheconversionanddecompositionmechanismweproposed.Ourobjectivewastokeepmodifi-
cationsoftheFortransourcecodestoaminimum.TheconversiontooltakestheFortranapplicationprogramas
inputandhelpsprogrammersgenerateaC/C++headerfileandanIDLfileforwrappingtheFortrancode.

Inourcurrentenvironment,individualprogrammersneedtodeterminehowtodecomposethelegacyapplica-
tionintoseveralreusablecomponentsonthebasisofthecohesionandcouplingfactorsofthefunctionsandsub-
routines.Inthefuture,weplantoaddananalyzertooltohelpprogrammersextractobjectsfromlegacycodes.
Earlierstudiesinobjectextractioncanbefoundinreferences10and11.Thistopicisbeyondthescopeofthis
paper.

MostFortranapplicationsusetheCOMMONblocktodistributealargenumberofvariablesamongseveral
functions.COMMONblocksplayarolesimilartothatoftheglobalvariablesusedinC.IntheCORBA-compliant
programmingenvironment,globalvariablescannotbeusedtopassvaluesbetweenobjects.Oneapproachtodealing
withsuchproblemistoputtheCOMMONvariablesintotheparameterlist,butthisrequiresextensivemodification
oftheFortransourcecode,whichviolatesourdesignconsiderations.OurapproachistoextracttheCOMMON
blocksandconvertthemintoastructure-typeattributeinC++.Throughtheattributes,eachcomponentcaninitialize
thevariablesandreturnthecomputedresultbacktotheclient.Withourconversiontool,theprogrammingeffortcan
begreatlyreducedbecausefunctionheadings,types,andeventheCOMMONblocksareconvertedtoC++andIDL
styles.

IMPLEMENTATIONISSUES

Theconversiontoolweproposedintheprevioussectionconsistsofaparserandacodegenerator.Theparser
constructsparsingtreesfromtheinputFortrancodes,andthegeneratortranslatesthetreesintoC++/IDLcodes.
Insteadofwritingalanguagetranslatorfromthebeginning,weimplementedtheconversiontoolwithanexisting
Fortran-to-Cconvertercalledf2c(ref.12).Wechosethef2cpackagebecauseit isanopen-sourceprogramandhas
beenwidelyusedinacademicareas.
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Thef2cprogramtranslatesFortran77codestoCcodes.Sinceourgoalis to wrap the Fortran codes and provide
the interface for both the client and the server, we only need to use f2c to extract and translate the codes of data

types, variable declarations, and function headings. The function bodies and statements are of no interest to us.
However, the codes converted by f2c do not totally meet the IDL syntactic requirements. For example, IDL requires

a tag in the structure type, whereas C does not. Unfortunately, f2c translates a Fortran COMMON block into a struc-

ture variable in C without a tag. Furthermore, the structure tag can be used as a type to define structure variables in

IDL. In C, it has to put the keyword struct in front of the tag, and this kind of declaration is not allowed in IDL.

The syntactic difference between the C and IDL data structure required some manual editing of the code gener-
ated from f2c in our work. This inconvenience motivated us to modify the f2c program by adding a few codes to

generate the tag for a structure. Figure 2 shows an example of Fortran codes with the declarations of the COMMON

blocks cgcon and di sp. The corresponding codes in IDL, as translated by the modified f2c program (f2CORBA),

are shown in figure 3.
Like the example shown in figure 2, most Fortran applications have several COMMON blocks. After decom-

posing the application into a few CORBA objects, the problem of passing the structure variables (i.e., COMMON
blocks) to several servers needs to be solved. Our current approach is to merge all the structures into another

structure (e.g., lu_tag in fig. 3) and use an attribute (e.g., lu_all in fig. 3) to facilitate data transfer.

This approach is based on the assumption that each server needs to access all the COMMON blocks. However,
some servers may access only parts of them. A graphical user interface (GUI) to ease the conversion task has been

partially developed. Programmers will be able to simply click on an item to select a structure variable from a list box
to be a member in a structure-type attribute (see fig. 4). To implement the GUI interface, we are using the tool
Tcl/Tk (ref. 13) because of its availability and portability. Tcl/Tk can be downloaded from the World Wide Web

(ref. 14) and has been used on most operating system platforms, including UNIX, Windows NT (Microsoft Corp.),

and Macintosh (Apple Corp.). Furthermore, most programmers can learn the fundamentals of Tcl/Tk and write

script programs to do real work in a few days.
We have successfully tested the proposed conversion methodology on different CORBA packages: VisiBroker

C++ (Inprise/Borland Corp., ref. 15) and MICO (ref. 16). Because of availability and portability, we prefer using

MICO rather than VisiBroker C++. For example, VisiBroker C++, a commerical software program, only works

with a Sparcworks C++ (Sun Microsystems) compiler on Sun Sparc or Ultra (Sun Microsystems) platforms. MICO,
a public-domain ORB with a complete CORBA compliant implementation, relies on the GNU package and, hence,

can be ported easily to almost any platform, including Solaris, LINUX, and Windows NT.

PERFORMANCE MEASUREMENTS

To investigate the overhead produced in distributed object computing, we selected the LU and BT benchmarks
from the NAS Parallel Benchmarks (NPB) suite (ref. 17). These benchmarks, which were devised by the Numerical

Aerodynamics Simulation (NAS) program at the NASA Ames Research Center, have been used widely to study the

performance of parallel computing. For example, we used the benchmarks to evaluate the performance of a cluster
of 32 Intel P6 (Intel Corp.) workstations that were connected by a two-level tree-structure network (ref. 18). The
NPB 2.3 benchmarks are a set of eight problems consisting of five kernels that highlight specific areas of machine

performance and three pseudoapplications that simulate computational fluid dynamics (CFD). Brief descriptions of
the LU and BT benchmarks follow:

• Application LU solves a finite difference discretization of the three-dimensional compressible Navier-

Stokes equations by using a symmetric successive over-relaxation (SSOR) numerical scheme.

• Application BT is based on a Beam-Wanning approximate factorization that decouples the x, y, and _-

dimensions, resulting in three sets of narrow-banded, regularly structured systems of linear equations.

We used the sample-size serial version of the LU and BT benchmarks (NPB2.3-serial) and decomposed each
benchmark into two server objects. The client needed to contact these two servers one after the other to accomplish

the task. The experiments were performed on a pair of Sun Ultra computers (170-MHz, 128-MB) running Solaris
2.6 (Sun Microsystems) and also on a pair of Intel P6 computers (400-MHz, 512-MB) running LINUX kernel
2.2.12. The clients and servers were connected through a 100BaseT local area network (LAN).

Tables I and II show the breakdown of the elapsed time for running the benchmarks LU and BT, respectively.

For comparison, we also ran the original programs. The results show that the time for service binding is small.
However, the communication overhead, including the time for marshaling and unmarshaling data between the client

and the servers, cannot be ignored.
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CONCLUSION

ManyscientificapplicationsinaerodynamicsandsolidmechanicsarewritteninFortran. Refitting these legacy
Fortran codes with Common Object Request Broker Architecture (CORBA) objects can increase the code reusabil-

ity. In this paper, we have presented a methodology to integrate Fortran legacy programs into a distributed object

framework. Issues and strategies regarding the conversion and decomposition of Fortran codes into CORBA objects
have been discussed. We also have implemented a conversion tool that takes the Fortran application program as

input and generates the C/C++ header file and the Interface Definition Language (IDL) file. The tedious program-
ming tasks for wrapping the codes can, therefore, be reduced, In the future, we plan to add more user-friendly

graphical user interfaces and to provide an analyzer tool to help programmers easily extract objects from legacy
applications.
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TABLE I.--BREAKDOWN OF ELAPSED TIME FOR RUNNING THE CLIENT-SERVER BENCHMARK LU

Benchmark LU Elapsed time, sec
Traditional One client, two servers

Sun Ultra
PC LINUX

Computation Total Binding
2.99 3.05 0.046
1.51 1.58 .019

Computation Communication Total
2.99 0.33 3.37
1.51 .19 1.72

TABLE II.--BREAKDOWN OF ELAPSED TIME FOR RUNNING THE CLIENT-SERVER BENCHMARK BT

Benchmark BT Elapsed time, sec

Sun Ultra
PC LINUX

Traditional One client, two servers

Computation Total Bindin_ Computation Conmmnication Total
6.99 7.25 0.047 6.99 2.12 9.16
4.16 4.35 .019 4.16 1.38 5.73

Fortran application

I COMMON variables

CORBA Object1

C/C++ wrapper

COMMO i variables.

attribute

_CORBA Object2

_ __C/C++ wrapper

attribute

Figure 1 .--Functional diagram of f2CORBA conversion tool. CORBA, Common

Object Request Broker Architecture; IDL, Interface Definition Language.
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integer nx, ny, nz

integer nxO, nyO, nzO

double precision dxi, deta, dzeta

double precision txl, tx2, tx3

double precision tyl, ty2, ty3

common/cgcon/ dxi, deta, dzeta,

> txl, tx2, tx3,

> tyl, ty2, ty3, ...

> nx, ny, nz,

> nxO, nyO, nzO,

double precision dxl, dx2, dx3, dx4, dx5

double precision dyl, dy2, dy3, dy4, dy5

common/disp/ dxl, dx2, dx3, dx4, dx5,

> dyl, dy2, dy3, dy4, dy5,

Figure 2.--OnginalFo_ran codes with COMMON
block variables.

struct cgcon_tag {

double dxi, deta, dzeta, txl, tx2, tx3, tyl, ty2, ty3, . . . ;

integer nx, ny, nz, nxO, nyO, nzO .... ;

};
struct disp_tag {

double dxl, dx2, dx3, dx4, dx5, dyl, dy2, dy3, dy4, dy5 .... ;

};

struct lu tag {

cgcon_t ag cgcon_;

disp_t ag disp_;

};
interface Lul {

attribute lu_tag lu_all;

void lul_comp () ;

};
interface Lu2 {

attribute lu_tag lu_all;

void lu2_comp () ;

};

Figure 3._onverted codes in Interface Definition Language (IDL).
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Figure 4.mGraphical user interface for structure
variable selection.
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